
www.manaraa.com

Brain signals for spatial attention predict
performance in a motion discrimination task
Ayelet Sapir*, Giovanni d’Avossa*, Mark McAvoy, Gordon L. Shulman, and Maurizio Corbetta†

Departments of Neurology, Radiology, and Anatomy and Neurobiology, Washington University School of Medicine, St. Louis, MO 63110

Edited by Marcus E. Raichle, Washington University School of Medicine, St. Louis, MO, and approved July 29, 2005 (received for review June 6, 2005)

The reliability of visual perception is thought to reflect the quality
of the sensory information. However, we show that subjects’
performance can be predicted, trial-by-trial, by neural activity that
precedes the onset of a sensory stimulus. Using functional MRI
(fMRI), we studied how neural mechanisms that mediate spatial
attention affect the accuracy of a motion discrimination judgment.
The amplitude of blood oxygen level-dependent (BOLD) signals
after a cue directing spatial attention predicted subjects’ accuracy
on 60–75% of the trials. Widespread predictive signals, which
included dorsal parietal, visual extra-striate, prefrontal and senso-
ry-motor cortex, depended on whether the cue correctly specified
the stimulus location. Therefore, these signals indicate the degree
of utilization of the cued information and play a role in the control
of spatial attention. We conclude that variability in perceptual
performance can be partly explained by the variability in endog-
enous, preparatory processes and that BOLD signals can be used to
forecast human behavior.

functional MRI � performance variability � cue utilization � reward

V isual perception depends on the quality of sensory infor-
mation and the fidelity of its neural representation. Recent

experiments have emphasized the importance of endogenous
processes such as attention, working memory, and motor plan-
ning, in modulating sensory activity (1–4). Furthermore, current
theories and empirical results suggest that the brain maintains an
on-line internal representation of the world that is modulated
rather than determined by sensory information (5–7).

To study the influence of endogenous processes on visual per-
ception, we examined whether preparatory signals related to the
voluntary allocation of spatial attention are predictive of subjects’
performance in a motion discrimination task. For correlational
methods such as functional MRI (fMRI) and single unit recordings,
the strongest and most direct link between brain activity and
behavior is the trial-to-trial relation between neural signals and
choice. The feasibility of this approach has been demonstrated
repeatedly in single unit studies (8–12), where the neuronal re-
sponse in areas sensitive to motion during a motion discrimination
task correlates, on a trial-by-trial basis, with the animal’s report.
Importantly, this correlation persisted even when there was no net
directional signal in the stimulus, suggesting that choice can depend
on purely endogenous signals.

However, it is largely unknown to what degree endogenous
signals that precede stimulus analysis are predictive of perfor-
mance. Single-unit studies in extra-striate visual areas have failed
thus far to show that trial-by-trial variations in neural signals
preceding the stimulus bear on performance accuracy (12). In
higher-order parietal cortex, the magnitude of the neuronal re-
sponse correlates on average with the locus of attention, but it is
unknown whether it is predictive of performance on a trial-by-trial
basis (13). Although several studies in humans have examined the
relation between blood oxygen level-dependent (BOLD) signals
and behavior (14–18), we focus on purely endogenous preparatory
signals that clearly precede the stimulus and decision.

To isolate endogenous sources of behavioral variability and to
separate predictive signals from signals evoked by the stimulus, we
measured cue-related activity in a paradigm in which a cue indi-

cated the likely location of a motion signal whose direction subjects
discriminated (12, 19). Cues have systematic effects on perfor-
mance (20). Although there is no evidence that cues are used
variably from trial to trial, thus contributing to performance vari-
ability, we expected that variations would occur for two reasons.
First, during the long interval that separated cue and target,
maintenance of attention may lapse, and attentional biases at the
cued location may consequently vary. Second, shifts of attention are
voluntary (21) and depend on a decision whether to use the cue. It
is known that choices among alternatives associated with a proba-
bilistic outcome vary from trial to trial (22). Because the cue
sometimes does not indicate the target location, the decision to use
it should vary. Critically, both sources of variation are purely
endogenous.

Several processes could generate BOLD responses that are
predictive of performance, such as alertness, effort, motivation, and
spatial attention. To determine the nature of predictive signals, we
measured BOLD on trials where the cue correctly (valid trials) or
incorrectly (invalid trials) specified the subsequent target location.
If BOLD amplitude reflects the use of the cue, which improves
performance when it is valid but hinders performance when it is
invalid, then larger BOLD signals should predict correct responses
on valid trials but incorrect responses on invalid trials. In contrast,
for signals unrelated to spatial attention, the difference between
correct and incorrect trials should not depend on cue validity.

The relation between average BOLD signals and behavior does
not answer how accurately BOLD can track the fluctuation of
processes on a trial-by-trial basis, because it may capture only a
small fraction of the neural activity that determines performance
variability. A critical aspect of this work was to quantify the
proportion of behavioral responses accounted for by trial-to-trial
variations in the BOLD signal. We present data that indicate that
BOLD is sensitive enough to account for performance variability.

Materials and Methods
Four subjects took part in the experiment. Each subject was scanned
in seven to eight separate 3-h sessions and completed between 814
and 990 trials. Written consent was obtained before each behavioral
and imaging session. The experimental protocol was approved by
the Washington University Human Studies Review Board.

Experimental Stimuli and Design. Stimuli were generated with an
Apple G4 by using graphic routines for MATLAB (23, 24) and were
presented on a translucent screen by a Sharp liquid crystal display
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(LCD) projector (800 � 600-pixel resolution). The subjects viewed
the screen by means of a mirror placed above the head coil.

At the onset of each trial (Fig. 1), an arrow was presented at the
center of the screen for 2.165 (subject 1) or 0.5 s (subjects 2, 3, and
4), which was followed by a fixation cross. Four random-dot
kinematograms (RDKs) were presented for 200 ms, 4, 8, or 11 s
after cue onset. Only data from trials with the longest delay are
reported. Each RDK contained 100 dots in positive contrast placed
within a circular window of 3.5° in diameter, centered in one visual
quadrant at an eccentricity of 5.7°. Dot lifetime was two frames.
Frame refresh rate was 72 Hz. In one of the RDKs, a fixed
proportion of the dots was displaced coherently in a given direction
(left, right, up, or down) at a speed of 6.5°�s. Subjects indicated the
direction of motion by pressing one of four keys. The percentage of
dots moving coherently was determined before scanning in multiple
behavioral sessions by using a QUEST procedure (25). The cue
indicated the visual quadrant containing the coherent motion on
80% of the trials (valid trials). On the remaining 20% (invalid
trials), the coherent motion occurred in one of the uncued locations.
A new trial started 15, 17, or 19 s after the onset of the previous
target, allowing the target-evoked BOLD response to return to
baseline.

Eye position was monitored with an ASL 504 (Applied Science
Laboratories, Bedford, MA) eye tracker. Acceptable recordings
were obtained on 30% of the trials in subject 1 and in 32% of the
trials in subject 4. Accurate fixation (i.e., eye deviation �1.5°)
occurred in �99% of the trials. In the other two subjects, the quality
of the recordings did not allow offline analysis of the eye position
traces. Eye position was nevertheless monitored online. Fixation
was encouraged regularly between scans, and subjects were un-
aware of interruptions in recordings.

MRI. Data were collected on a Siemens (Iselin, NJ) 1.5-Tesla vision
system. Anatomical images were acquired by using a magnetization
prepared rapid gradient echo (MP-RAGE) sequence [repetition
time (TR) � 97 ms, echo time (TE) � 4 ms, flip angle � 12°,
inversion time T1 � 300 ms]. Functional scans consisted of 132
frames acquired with an asymmetric spin-echo, echo-planar se-
quence sensitive to BOLD contrast over the whole brain (TR �
2.165 s, TE � 37 ms, flip angle � 90°, 16 contiguous 8-mm axial
slices, 3.75 � 3.75-mm in-plane resolution). Images were realigned
within and across runs, and across sessions, to correct for head
motion by using six degrees of freedom, rigid-body realignment.

Analysis. Voxel-wise BOLD time courses were computed by fitting
the BOLD time series with a general linear model containing a set
of delta functions, one for each frame of the average BOLD
response and nuisance variables, which included a constant, a linear
term, and low-frequency sinusoids. The average BOLD response
for each trial type was estimated over 14 MR frames. When the
intertrial interval was �8 frames (i.e., 15 or 17 s), estimates of the
last 1 or 2 frames were subtracted from the first frames of the next
trial. This procedure allowed us to discount the effects of the trailing
edge of the target-evoked response on the cue-evoked response of

the subsequent trial. Residual images, obtained after subtracting
the nuisance parameters, were treated as modulations of the BOLD
signal due to changes in neural activity. A randomized, unbalanced
design, voxel-wise ANOVA was used to identify regions in which
the BOLD signal showed significant modulations by task factors
(e.g., validity and performance).

Conjunction maps were obtained in the following way: individual
statistical z maps were smoothed with a 12-mm-diameter sphere
and thresholded at z � 2 (P � 0.046) for the interaction and z � 3
(P � 0.0027) for the main effect. Voxels in the conjunction map
were those above the threshold in at least three subjects.

The relation between cue-period BOLD signals and perfor-
mance was studied on a trial-by-trial basis by computing the
predictive waveform over the first six MR frames. The template was
estimated by using three methods. First, the predictive waveform
was estimated as the difference of the average BOLD time courses
preceding correct and incorrect responses. Second, the predictive
component was estimated as a set of weights, �, by fitting a
multivariate logistic regression (MLR) model:

P�Rcor�b� �
e ��0��1b1�. . .��nbn�

1 � e ��0��1b1�. . .��nbn�
, [1]

where P(Rcor) is the probability of a correct response and b is the
BOLD signal over n frames (here 6) counting all trials. The
difference of the log-likelihood functions (the �-statistic) for the
complete model (�i, 0 � i � 6) vs. one containing only �0 was used
to ascertain the significance of the multivariate logistic regression.
This statistic has a �2 distribution with n degrees of freedom (26).
Finally, the predictive component was obtained by searching in �
space for a set of weights, which maximized the area under the
receiver operator characteristic (ROC, see below) curve. The
search was implemented by using an unconstrained optimization
algorithm (27). Each of the three methods yielded a waveform
template that was used to predict the subject’s accuracy trial by trial.
The predictive value, �, was computed as the inner product of the
BOLD signal and the template. Then, the two conditional proba-
bilities, P(� � crit�Rcor) and P(� � crit�Rinc) were systematically
evaluated as function of crit to obtain an ROC curve. To obtain an
unbiased estimate of the predictive value of each of the templates,
a repeated splitting procedure was implemented. Half of the data
was used to estimate the templates whereas the other half was used
to compute the �s. This procedure was repeated 100 times and
yielded boot-strapped estimates of the area under the characteristic
curve (AUC).

Results
Accuracy was higher on valid than invalid trials, indicating that
subjects used the spatial information provided by the cue (see Table
1, which is published as supporting information on the PNAS web
site).

A random-factor ANOVA was used to identify regions active
between cue and target presentation (i.e., the first six MR frames).
Fig. 2A displays regions of significant BOLD modulation after the
cue in subject 1. The map includes regions, identified on the basis
of anatomical landmarks (28–31) as follows: frontal [frontal eye
field (FEF) and ventral precentral sulcus (vPrCes)], parietal [intra-
parietal sulcus (IPS)�superior parietal lobule (SPL)], and temporal
[dorsal superior temporal sulcus (dSTS) and occipital cortex (V3a,
MT�, fusiform)]; the map is similar to maps reported in group
studies of spatial cueing (32). The effect of performance and cue
validity on the BOLD signal was assessed by using the validity-by-
performance interaction. Fig. 2B shows this statistic mapped onto
the subject’s brain. Regions whose relation with performance was
modulated by cue validity were found within the lateral orbito-
frontal cortex (OFC), the central sulcus (CS), the superior temporal
gyrus (STG), the lateral IPS and inferior parietal lobule (IPL), V3a,
MT�, and fusiform. Fig. 2C shows the group conjunction maps of

Fig. 1. Motion discrimination task, valid trial. The circles, which were not
visible in the display, show the areas occupied by the RDKs. Each arrow within
the circles indicates the direction of motion of a dot.
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performance-related BOLD signals modulated by cue validity (red)
and of the overall BOLD signal (blue). In a few visual extra-striate
and posterior parietal regions, BOLD activity showed both an
overall modulation and a correlation with subsequent discrimina-
tion performance that depended on cue validity. Conversely, sev-
eral performance-related regions did not show a systematic mod-
ulation of the BOLD response during the cue period, such as OFC
and CS. To quantify the degree of anatomical congruency between
overall and performance-related signals, we computed the voxel-
wise correlation between their z scores. We found that, on average,
there was a small negative correlation, which in individual subjects
was small, not significant or negative (see Table 2, which is
published as supporting information on the PNAS web site),
indicating that the overlap between overall and performance-
related signals is no greater than expected by chance.

Fig. 6, which is published as supporting information on the
PNAS web site, shows the conjunction map of the validity and
performance interaction. Performance-related signals that were
modulated by cue validity were found also in anterior and
posterior cingulate gyrus.

Figs. 3 and 4 show average time courses obtained from the
highlighted voxels, which demonstrate differences in the BOLD

response preceding correct and incorrect discriminations that de-
pended on cue validity. For all but one region, the BOLD response
preceding the stimulus was greater on correct than incorrect trials
when the cue was valid. When the cue was invalid, the opposite
pattern was observed. The reversal of the BOLD–performance
relation with validity indicates that predictive activity was related
specifically to the use of the cue and, by extension, spatial attention.

Different regions had idiosyncratic BOLD waveforms. SPL (Fig.
3A) showed sustained BOLD signal during the cue period. Previous
studies reported sustained cue BOLD responses in dorsal parietal
regions, suggesting that they are involved in maintaining attention

Fig. 3. BOLD time courses within visual and attention-related regions from
the validity by performance group conjunction map. BOLD response for
correct (blue) and incorrect discriminations (red) are shown for valid (left
column) and invalid trials (right column). The abscissa is the time from the
onset of the cue. The vertical line on the first time course marks the time of the
onset of the target.

Fig. 2. Individual and group statistical maps. (A) Map of significant BOLD
modulation between cue onset and target onset for subject 1. (B) Map of
validity by performance interaction. Performance-related signals that de-
pended on cue validity were observed in the lateral OFC (59), along the CS,
STG, the lateral IPS�IPL, V3a, MT�, and fusiform. (C) Conjunction maps of the
main effect of time (in blue) and the validity and performance interaction (in
red) are superimposed on a volumetric rendition of a standard brain. The
highlighted voxels have a z score higher than 3.0, for the main effect, or 2.0
for the interaction, in at least three of the four subjects. The respective
uncorrected P values are 10�7 and 0.0005. Overlap between overall and
performance-related BOLD that modulate with cue validity is mostly observed
in occipital (right fusiform, right MT�, and left V3a) and dorsal parietal
regions (left SPL and left lateral IPS�IPL), whereas anatomical segregation was
observed in frontal regions.

Fig. 4. BOLD time courses in regions outside the attention network that
showed performance-related activity that depended on cue validity. The
figure format is identical to that of Fig. 3.

17812 � www.pnas.org�cgi�doi�10.1073�pnas.0504678102 Sapir et al.
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at the cued location (33–35). Lateral IPS�IPL (see data for left
IPS�IPL in Fig. 3B) showed much larger performance-related
modulations for invalid than valid trials, replicating a pattern that
to a lesser degree was found across most performance-related
regions. Three regions in visual extra-striate cortex, MT� (time
courses in Fig. 5), V3a, and fusiform, showed differential BOLD
signals preceding correct and incorrect discriminations that de-
pended on cue validity. Fusiform and V3a (Fig. 3 C and D,
respectively) showed large cue responses, probably reflecting the
sensory effect of the cue. The finding of performance-related
activity preceding motion discrimination in the fusiform is consis-
tent with previous studies, which have found signals in this area
related to working memory for motion direction (36) and to
motion-direction discrimination (37). V3a was unique in showing
greater cue responses preceding incorrect than correct discrimina-
tion on valid trials, with no reliable difference on invalid trials.
Single-unit data obtained in a memory saccade task from area V3a

of nonhuman primates (38) showed a suppression of firing rate
below baseline during the delay period in most units, together with
greater responses to a saccadic target than a non-target. This
finding and the transient nature of the cue-evoked BOLD response
may indicate that V3a is involved in target selection but not
maintenance of spatial information and suggest that performance-
related signal in this region reflected suppression during the cue
period.

Several regions outside the attentional network (32) showed
performance-related signals that were modulated by cue validity.
Lateral OFC (Fig. 4A) showed deactivations preceding the stimu-
lus, which nevertheless differentiated between correct and incorrect
discriminations. Previous studies suggest that lateral OFC is in-
volved in error detection and processes related to reward history
that affect subsequent behavior (39, 40). Consistently with this
hypothesis, larger target BOLD activity was found after incorrect
than correct discriminations. Posterior cingulate (Fig. 4B) involve-

Fig. 5. Predictive signals in MT�. Average BOLD time courses on valid and invalid trials, predictive BOLD components, and ROCs are shown from MT� of all subjects.
For each subject, the Top panel shows the average BOLD response for correct (blue) and incorrect (red) discriminations on valid (Left column) and invalid (Right column)
trials. The abscissa is the time from cue onset. The error bars are standard errors. (Middle) The predictive component computed according to three different methods.
The blue line is the difference of the BOLD signals for correct and incorrect discriminations; the red line is the BOLD component whose magnitude, trial-by-trial, best
discriminates correct from incorrect trials; the green line is the BOLD component estimated by the multivariate logistic regression. (Bottom) ROC curves. The abscissa
and the ordinate are the probability that the predictive component is greater than a criterion when the subject is incorrect and correct, respectively. The diagonal from
the left lower to the right upper corner represent chance predictability. The area under the characteristic curve (AUC) represents the strength of the predictive signal.
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ment in cue utilization is consistent with previous suggestions that
it acts as an interface between high-level reward signals and the
attentional system (41). Sensory-motor cortices (Fig. 4C) also
showed performance-related modulations during the cue period
that depended on cue validity, which suggest that the evaluation of
the sensory information, which is affected by the cue, is undertaken
throughout the brain. According to this speculative, but not novel,
viewpoint (42), motor cortex is not a passive recipient of a decision
elaborated somewhere else. This finding is consistent with the role
of premotor structures in representing the perceptual decision
variable (e.g., refs. 11 and 43).

We next quantified how well the BOLD signal predicted per-
formance. Fig. 5 shows predictive signals in MT� and the accuracy
of the prediction for each subject (see Fig. 7, which is published as
supporting information on the PNAS web site, for predictive
analysis in lateral IPS�IPL). The Top row of each panel shows the
average BOLD responses on valid and invalid trials. The Middle row
shows the predictive components of the BOLD response, computed
according to three different criteria (see Materials and Methods).
Similar predictive components were obtained with the three meth-
ods, suggesting robust estimates, although the predictive waveform
obtained from the difference of correct and incorrect average time
courses (blue line) was flatter than the other two.

The predictive components for valid and invalid trials were
similar in shape but reversed in sign, indicating that the same
processes that improve performance on valid trials hamper
performance on invalid trials. Two other aspects of the shape of the
predictive component are worth emphasizing. First, in three sub-
jects, differences between BOLD responses on correct and
incorrect trials seemed already present at the onset of the cue
(Fig. 5 B–D), suggesting that cue utilization may depend on
processes that precede the cue. Secondly, the average time course
of the BOLD response was seldom identical to the time course of
the predictive component. For example, in subject 1 (Fig. 5A), the
average BOLD response showed a unimodal response with a peak
on the fourth frame, whereas the predictive component showed a
bimodal modulation. This result indicates that the BOLD response
reflects multiple processes, but only some vary from trial to trial and
hence predict performance.

An ROC analysis was used to quantify the degree to which
preparatory signals predicted accuracy. As shown in the Bottom
panels of Fig. 5, the area under the characteristic curve (AUC) was
0.6–0.75, indicating that, at least on 60–75% of the trials, perfor-
mance could be predicted on the basis of BOLD. Performance
probabilities (i.e., the probability of predicting whether the subject
will be correct or incorrect) estimated from signals that precede the
decision compare favorably with choice probabilities (i.e., the
probability of correctly predicting the actual response) estimated
from single-unit activity recorded at decision time (9, 11, 44).
Although the upper bound for choice probability is 1.0, the upper
bound for performance probability is �1.0. Because the BOLD
response on trials in which subjects guessed should not differ for
correct and incorrect responses, a certain proportion of correct
trials will be indistinguishable from incorrect trials.

Several regions showed a significant effect of performance and
lack of interaction with cue validity, suggesting that these signals
were not related to spatial attention. Interestingly, the cue BOLD
signal was mostly greater on incorrect than correct trials, indicating
that activity in these regions interfered with performance. Fig. 8,
which is published as supporting information on the PNAS web site,
shows average time courses from a left medial orbito-frontal region
that demonstrates this activity pattern.

Discussion
Accuracy was predicted, trial-by-trial, by the BOLD signal that
preceded the stimulus and the subjects’ decision. Predictive activity
was widespread but overlapped only a few regions that showed
overall modulations of the BOLD response (see Fig. 2), including

motion and shape selective extra-striate areas such as MT�, V3a,
and fusiform gyrus, and dorsal parietal areas such as SPL and
lateral IPS�IPL, thought to be involved in the control of spatial
attention. Moreover, predictive signals were also found in several
regions that did not demonstrate overall modulation of the BOLD
signal during the cue period, such as lateral OFC, CS, and STG. In
both sets of regions, larger BOLD activity was mostly associated
with higher accuracy on valid trials and lower accuracy on invalid
trials, indicating that the predictive activity was related to the use of
the cue. These findings indicate that performance signals related to
cue utilization were generated beyond the attentional network (32),
for example in regions involved in regulating behavior based on
reward. Finally, we found that, at least on 60–75% of the trials, the
subject’s accuracy could be forecast on the basis of the preceding
BOLD signal.

Significance of Endogenous Sources of Performance Variability. This
experiment was designed to study purely endogenous sources of
performance variability. First, we found BOLD signals that pre-
ceded the stimulus and the subject’s response and were predictive
of accuracy. Second, because the cue was a simple, highly visible
foveal stimulus, predictive signals could not reflect variability in cue
detection or identification. Rather, predictive signals reflected
endogenous processes unrelated to the sensory quality of the cue.
Third, because the cue indicated the likely location of the target and
not its direction of motion, these predictive signals affected per-
ceptual rather than response processes. Fourth, because the BOLD-
accuracy relationship depended on the validity of the cue, predictive
activity was specifically linked to spatial processes rather than
arousal, effort, or perceptual difficulty.

The presence of a substantial endogenous predictive activity is
inconsistent with the view that performance variability reflects only
noise in the image luminance pattern, sensory processes, and
limited capacity to analyze sensory information (45–47). Previous
psychophysical work on the factors limiting motion detection indi-
cates that stimulus and sensory factors cannot account for �30% of
performance variability (48). Our results suggest that a large
proportion of performance variability depends on variations in
spatial attention and other endogenous signals that precede the
stimulus. This conclusion rests on quantitative estimates of trial-
by-trial predictability (i.e., ROC curves) rather than methods that
compare only mean activity across correct and incorrect trials.

The presence of endogenous predictive signals is the strongest
evidence that can be obtained by using correlational methods, for
a causal relation between neural activity and behavior. An alter-
native explanation that predictive signals are a consequence of
behavior is unlikely, because the behavior (motion discrimination)
had yet to take place at the time these signals were recorded.
However, because our inferences are based on correlational ob-
servations, it is possible that the correlation is accounted for by
unobserved factors that affect both BOLD and behavior.

Cue-related performance probabilities were as large as the
choice probabilities estimated from single-units data obtained at
the time of stimulus presentation (44, 49). Similar values for choice
probability using fMRI have been recently found during a percep-
tual decision involving facial expressions (17). One explanation for
this surprising degree of reliability is that, whereas the BOLD signal
is degraded by a number of noise sources (50), it represents the
cumulative effects of synaptic activity of large populations of
afferent and intra-cortical fibers (51, 52), similar to local field
potentials, which have been shown to be more accurate than
single-unit spike rates in predicting aspects of behavior (53).

The Nature of Endogenous Sources of Performance Variability. We
separated predictive activity related to the use of a spatial cue from
predictive activity reflecting other processes that also vary from trial
to trial. The dependence of the BOLD–behavior relationship on
cue validity clearly demonstrates that the predictive signals index

17814 � www.pnas.org�cgi�doi�10.1073�pnas.0504678102 Sapir et al.
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cue utilization and introduces a direct method for establishing the
nature of performance-related signals. This interaction is impor-
tant, because other experiments have relied on the anatomical
colocalization (14, 15) or the temporal coincidence of predictive
activity with specific psychological processes (18) to infer its nature.
We found that, although the topographical distribution of mean
cue-related activity was identical to that associated with spatial
attention in other experiments (32, 54, 55), only a few of those
regions actually contained activity that predicted performance.
Furthermore, even in areas that showed predictive activity, only
some of the temporal components of the BOLD response were
predictive. We also found predictive signals time-locked to cue
onset but did not depend on cue validity and therefore cannot be
related to spatial attention. Interestingly, these signals were gener-
ally greater on incorrect than correct trials. A speculative interpre-
tation is that these signals reflect task-irrelevant processes and that
their suppression may improve performance by freeing resources
for task-relevant processes.

Although predictive signals that depend on cue validity must
reflect the use of the cued information, we note two interpretations.
First, these signals may reflect maintenance of attention at the cued
location. Single-unit data in parietal cortex have shown that cue-
evoked neural activity across units with local receptive fields
correlates with contrast sensitivity across the visual field (13),
suggesting that they control the allocation of spatial attention. A
similar view of the role of parietal cortex was proposed in fMRI
studies, which reported sustained BOLD activity in frontal and
parietal regions during the delay between a spatial cue and a target.
It was suggested that sustained activity represented maintenance of
attention at the cued location (34, 35). Our results partly support
this hypothesis because some parietal regions with more sustained
BOLD responses to the cue showed predictive signals that inter-
acted with cue validity. Sustained, preparatory activity has been
reported in visual cortex after spatial cues (16, 34, 56) and inter-
preted as a correlate of a top-down attentional bias at the cued

location. However, it is unknown whether these signals reflect
functionally significant activity. Because predictive signals were
found in extra-striate areas with transient responses, such as fusi-
form and V3a, one should infer that sustained increases are not
necessary for attentional effects on visual cortex. In our paradigm,
which used a very long delay interval, not even parietal regions with
sustained responses showed increased activity up to the time of the
target-evoked response.

A second interpretation is that predictive signals reflect the
subject’s ongoing estimate of the cue validity, which determines the
probability that the subject will pay attention to the cued location.
For example, after a long sequence of invalid cues, subjects may
expect a valid cue, increasing the probability of attending to the
cued location. If expected cue validity is reflected in the amplitude
of the BOLD response, then larger target BOLD responses will be
associated with greater cue utilization and accuracy on valid trials
and greater cue utilization but lower accuracy on invalid trials.
According to this hypothesis, predictive signals are similar to
expected ‘‘utility’’ or ‘‘reward’’ value signals (57, 58). The finding in
lateral OFC of larger BOLD responses after incorrect than correct
discriminations as well as performance-related signals preceding
the target is consistent with the view that the estimation of cue
validity depends on performance in previous trials. Also, the
presence of performance-related signals in posterior cingulate is
consistent with the view that cue utilization depends on an estimate
of its behavioral value. Our results suggest that, even in a simple
visual discrimination task, performance is continuously monitored
to update internal estimates of regularities in the environment and
that the mechanisms that are involved in appetitive behavior may
contribute to the evaluation of internal representations of the
external world.
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